Rostral Migratory Stream
   HOME

TheInfoList



OR:

The rostral migratory stream (RMS) is a specialized migratory route found in the
brain A brain is an organ that serves as the center of the nervous system in all vertebrate and most invertebrate animals. It is located in the head, usually close to the sensory organs for senses such as vision. It is the most complex organ in a v ...
of some
animal Animals are multicellular, eukaryotic organisms in the Kingdom (biology), biological kingdom Animalia. With few exceptions, animals Heterotroph, consume organic material, Cellular respiration#Aerobic respiration, breathe oxygen, are Motilit ...
s along which neuronal precursors that originated in the
subventricular zone The subventricular zone (SVZ) is a region situated on the outside wall of each lateral ventricle of the vertebrate brain. It is present in both the embryonic and adult brain. In embryonic life, the SVZ refers to a secondary proliferative zone ...
(SVZ) of the brain migrate to reach the main
olfactory bulb The olfactory bulb (Latin: ''bulbus olfactorius'') is a grey matter, neural structure of the vertebrate forebrain involved in olfaction, the sense of odor, smell. It sends olfactory information to be further processed in the amygdala, the orbitof ...
(OB). The importance of the RMS lies in its ability to refine and even change an animal's sensitivity to smells, which explains its importance and larger size in the rodent brain as compared to the human brain, as our
olfactory The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, it ...
sense is not as developed. This pathway has been studied in the
rodent Rodents (from Latin , 'to gnaw') are mammals of the order Rodentia (), which are characterized by a single pair of continuously growing incisors in each of the upper and lower jaws. About 40% of all mammal species are rodents. They are na ...
,
rabbit Rabbits, also known as bunnies or bunny rabbits, are small mammals in the family Leporidae (which also contains the hares) of the order Lagomorpha (which also contains the pikas). ''Oryctolagus cuniculus'' includes the European rabbit speci ...
, and both the
squirrel monkey Squirrel monkeys are New World monkeys of the genus ''Saimiri''. ''Saimiri'' is the only genus in the subfamily Saimirinae. The name of the genus is of Tupi origin (''sai-mirím'' or ''çai-mbirín'', with ''sai'' meaning 'monkey' and ''mirím'' ...
and
rhesus monkey The rhesus macaque (''Macaca mulatta''), colloquially rhesus monkey, is a species of Old World monkey. There are between six and nine recognised subspecies that are split between two groups, the Chinese-derived and the Indian-derived. Generally b ...
. When the neurons reach the OB they differentiate into
GABAergic In molecular biology and physiology, something is GABAergic or GABAnergic if it pertains to or affects the neurotransmitter GABA. For example, a synapse is GABAergic if it uses GABA as its neurotransmitter, and a GABAergic neuron produces GABA. A ...
interneurons Interneurons (also called internuncial neurons, relay neurons, association neurons, connector neurons, intermediate neurons or local circuit neurons) are neurons that connect two brain regions, i.e. not direct motor neurons or sensory neurons. In ...
as they are integrated into either the granule cell layer or periglomerular layer. Although it was originally believed that neurons could not regenerate in the adult brain,
neurogenesis Neurogenesis is the process by which nervous system cells, the neurons, are produced by neural stem cells (NSCs). It occurs in all species of animals except the porifera (sponges) and placozoans. Types of NSCs include neuroepithelial cells (NECs) ...
has been shown to occur in mammalian brains, including those of primates. However, neurogenesis is limited to the
hippocampus The hippocampus (via Latin from Greek , 'seahorse') is a major component of the brain of humans and other vertebrates. Humans and other mammals have two hippocampi, one in each side of the brain. The hippocampus is part of the limbic system, a ...
and SVZ, and the RMS is one mechanism neurons use to relocate from these areas.


Brief history

The RMS was named and discovered by J. Altman in 1969 using 3H-thymidine
autoradiography An autoradiograph is an image on an X-ray film or nuclear emulsion produced by the pattern of decay emissions (e.g., beta particles or gamma rays) from a distribution of a radioactive substance. Alternatively, the autoradiograph is also available ...
in the rat brain. He traced the migration of labeled cells from the SVZ, which is situated throughout the lateral walls of the
lateral ventricles The lateral ventricles are the two largest ventricles of the brain and contain cerebrospinal fluid (CSF). Each cerebral hemisphere contains a lateral ventricle, known as the left or right ventricle, respectively. Each lateral ventricle resemble ...
, rostrally to the main olfactory bulb. He also quantitatively studied the effect of age on the size of the RMS. There is still some ongoing debate about the extent of the RMS and adult SVZ neurogenesis of new neurons in humans.


Cell biology


Vascular cells

Vascular cells are known to play a prominent role in regulating proliferation of adult neural precursors. In the adult
subgranular zone The subgranular zone (SGZ) is a brain region in the hippocampus where adult neurogenesis occurs. The other major site of adult neurogenesis is the subventricular zone (SVZ) in the brain. Structure The subgranular zone is a narrow layer of cell ...
(SGZ), dense clusters of dividing cells were found to be anatomically close to the vasculature, especially capillaries. Contacts between adult SVZ neuronal precursors and blood vessels are unusually permeable and frequently devoid of
astrocyte Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endo ...
and
pericyte Pericytes (previously known as Rouget cells) are multi-functional mural cells of the microcirculation that wrap around the endothelial cells that line the capillaries throughout the body. Pericytes are embedded in the basement membrane of blood ca ...
interferences, suggesting that blood-derived cues are gaining direct access to adult neural precursors and their progeny. The vasculature also provides the substrate for new neuron migration after injury in the adult
striatum The striatum, or corpus striatum (also called the striate nucleus), is a nucleus (a cluster of neurons) in the subcortical basal ganglia of the forebrain. The striatum is a critical component of the motor and reward systems; receives glutamate ...
. In the RMS, vascular cells are arranged parallel to the route of the migrating cells and provide a scaffolding. Glial cells are also associated with the blood vessels; communication between these cells may be important for RMS migration, for example, in
BDNF Brain-derived neurotrophic factor (BDNF), or abrineurin, is a protein found in the and the periphery. that, in humans, is encoded by the ''BDNF'' gene. BDNF is a member of the neurotrophin family of growth factors, which are related to the cano ...
(brain-derived neurotrophic factor), a growth factor that is thought to module RMS migration.


Astrocytes

Astrocytes Astrocytes (from Ancient Greek , , "star" + , , "cavity", "cell"), also known collectively as astroglia, are characteristic star-shaped glial cells in the brain and spinal cord. They perform many functions, including biochemical control of endo ...
form
gap junctions Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
and are closely associated with the vasculature and its
basal lamina The basal lamina is a layer of extracellular matrix secreted by the epithelial cells, on which the epithelium sits. It is often incorrectly referred to as the basement membrane, though it does constitute a portion of the basement membrane. The ba ...
in the adult SVZ and subsequently in the RMS. They may serve as an interface to modulate influences of
endothelial The endothelium is a single layer of squamous endothelial cells that line the interior surface of blood vessels and lymphatic vessels. The endothelium forms an interface between circulating blood or lymph in the lumen and the rest of the vessel ...
and circulation-derived factors as well as the availability of
cytokines Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
and
growth factors A growth factor is a naturally occurring substance capable of stimulating cell proliferation, wound healing, and occasionally cellular differentiation. Usually it is a secreted protein or a steroid hormone. Growth factors are important for regu ...
in this system. In addition, astrocytes derived from the neurogenic hippocampus and SVZ, but not from the non-neurogenic
spinal cord The spinal cord is a long, thin, tubular structure made up of nervous tissue, which extends from the medulla oblongata in the brainstem to the lumbar region of the vertebral column (backbone). The backbone encloses the central canal of the spi ...
, promote proliferation and neuronal fate commitment of multipotent adult neural stem cells in culture, suggesting a role in the RMS. Astrocytes express a number of secreted and membrane-attached factors both ''in vitro'' and ''in vivo'' that are known to regulate proliferation and fate specification of adult neural precursors as well as neuronal migration, maturation, and
synapse In the nervous system, a synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another neuron or to the target effector cell. Synapses are essential to the transmission of nervous impulses from ...
formation. In the adult SVZ, astrocytes express
Robo Robo may refer to: *robot, an electro-mechanical device that can perform autonomous or preprogrammed tasks *Automation (robo-), roboticization *Robo (musician) (born 1955), Roberto Valverde, drummer in punk bands Black Flag and The Misfits *Robo ( ...
receptors and regulate the rapid migration of
SLIT1 Slit homolog 1 protein is a protein that in humans is encoded by the ''SLIT1'' gene In biology, the word gene (from , ; "...Wilhelm Johannsen coined the word gene to describe the Mendelian units of heredity..." meaning ''generation'' or '' ...
-expressing neuroblasts through the RMS. Additionally, it has been proposed that the neuroblasts themselves play a role in modulating the astrocytes through Slit-Robo interactions. In the absence of Slit, astrocytic processes do not align correctly, or create the "tubes", instead running across the migrating neurons. Adult SVZ astrocytes also appear to release
glutamate Glutamic acid (symbol Glu or E; the ionic form is known as glutamate) is an α-amino acid that is used by almost all living beings in the biosynthesis of proteins. It is a non-essential nutrient for humans, meaning that the human body can syn ...
to regulate the survival of
neuroblasts In vertebrates, a neuroblast or primitive nerve cell is a postmitotic cell that does not divide further, and which will develop into a neuron after a migration phase. In invertebrates such as ''Drosophila,'' neuroblasts are neural progenitor cells ...
. Unique to the adult SVZ,
ependymal cells The ependyma is the thin neuroepithelial ( simple columnar ciliated epithelium) lining of the ventricular system of the brain and the central canal of the spinal cord. The ependyma is one of the four types of neuroglia in the central nervous syst ...
lining the ventricular wall are in close association with neural precursors and their progeny, acting like a shield to protect the "neurogenic niche", a zone in which stem cells are retained after embryonic development for the production of new cells of the nervous system.


Other glial cells

Ependymal cells The ependyma is the thin neuroepithelial ( simple columnar ciliated epithelium) lining of the ventricular system of the brain and the central canal of the spinal cord. The ependyma is one of the four types of neuroglia in the central nervous syst ...
actively regulate neuronal fate specification of adult neural precursors through release of
Noggin Noggin may refer to: General * Noggin or gill (volume), a unit of volume * Noggin (cup), a small cup * Noggin, slang for head A head is the part of an organism which usually includes the ears, brain, forehead, cheeks, chin, eyes, nose, an ...
. Beating of the
cilia The cilium, plural cilia (), is a membrane-bound organelle found on most types of eukaryotic cell, and certain microorganisms known as ciliates. Cilia are absent in bacteria and archaea. The cilium has the shape of a slender threadlike projecti ...
of ependymal cells appears to set up concentration gradients of guidance molecules, such as
cytokines Cytokines are a broad and loose category of small proteins (~5–25 kDa) important in cell signaling. Cytokines are peptides and cannot cross the lipid bilayer of cells to enter the cytoplasm. Cytokines have been shown to be involved in autocrin ...
TNF-α Tumor necrosis factor (TNF, cachexin, or cachectin; formerly known as tumor necrosis factor alpha or TNF-α) is an adipokine and a cytokine. TNF is a member of the TNF superfamily, which consists of various transmembrane proteins with a homolog ...
(tumor necrosis factor) and
IGF-1 Insulin-like growth factor 1 (IGF-1), also called somatomedin C, is a hormone similar in molecular structure to insulin which plays an important role in childhood growth, and has anabolic effects in adults. IGF-1 is a protein that in humans is ...
(insulin-like growth factor), to direct migration of neuroblasts, such as in the RMS.
Microglia Microglia are a type of neuroglia (glial cell) located throughout the brain and spinal cord. Microglia account for about 7% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune de ...
also actively regulate adult neurogenesis. Under basal conditions,
apoptotic Apoptosis (from grc, ἀπόπτωσις, apóptōsis, 'falling off') is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes includ ...
corpses of newly generated neurons are rapidly
phagocytosed Phagocytosis () is the process by which a cell uses its plasma membrane to engulf a large particle (≥ 0.5 μm), giving rise to an internal compartment called the phagosome. It is one type of endocytosis. A cell that performs phagocytosis is ca ...
from the niche by unactivated microglia in the adult SGZ. Under inflammatory conditions, reactivated
microglia Microglia are a type of neuroglia (glial cell) located throughout the brain and spinal cord. Microglia account for about 7% of cells found within the brain. As the resident macrophage cells, they act as the first and main form of active immune de ...
can have both beneficial and detrimental effects on different aspects of adult neurogenesis, depending on the balance between secreted molecules with pro- and anti-inflammatory action. In one study, the activation of microglia and recruitment of
T cells A T cell is a type of lymphocyte. T cells are one of the important white blood cells of the immune system and play a central role in the adaptive immune response. T cells can be distinguished from other lymphocytes by the presence of a T-cell re ...
were suggested to be required for enriched environment-induced SGZ neurogenesis, suggesting a possible role in the RMS.


Migration mechanics

Cells in the RMS are believed to move by "chain migration". These neuroblasts are connected by membrane specializations including
gap junctions Gap junctions are specialized intercellular connections between a multitude of animal cell-types. They directly connect the cytoplasm of two cells, which allows various molecules, ions and electrical impulses to directly pass through a regulate ...
and
adherens junctions Adherens junctions (or zonula adherens, intermediate junction, or "belt desmosome") are protein complexes that occur at cell–cell junctions, cell–matrix junctions in epithelial and endothelial tissues, usually more basal than tight junctions. ...
, moving along each other towards the olfactory bulb through glial tubes. The pathway and mechanisms behind this movement are a ventriculo-olfactory neurogenic system (VONS), a glial framework, and a chemotaxic cell signalling system.


Ventriculo-olfactory neurogenic system (VONS)

The olfactory system is made up in part of the RMS which stretches from the subventricular zone in the wall of the lateral ventricle, through the basal forebrain, to the olfactory bulb (OB). ''VONS'' is the name given to this pathway, and it consists of the subventricular zone, the RMS, the olfactory tract and the olfactory bulb. Developing neurons leave the subventricular zone and enter the RMS and travel caudally and ventrally along the undersurface of the caudate nucleus; this is referred to as the descending limb. Upon reaching the ventral side of the caudate nucleus, the neurons follow the rostral limb and travel ventrally and rostrally, entering the anterior olfactory cortex (AOC). The AOC gives rise to the olfactory tract, which ends in the olfactory bulb.


Glial framework

Developing neurons travel toward the olfactory bulb along the RMS via glial tubes, which mark the division between the differentiated nervous tissue and the tissue with embryonic characteristics. Uniquely, the cells travel tangential to the brain surface, parallel to the pial surfaces rather than radially like most developing neurons. Neurons that migrate tangentially are typically believed to migrate independently of
radial glia Radial glial cells, or radial glial progenitor cells (RGPs), are bipolar-shaped progenitor cells that are responsible for producing all of the neurons in the cerebral cortex. RGPs also produce certain lineages of glia, including astrocytes and ol ...
but in the RMS researchers believe this is not the case. Adult rat glial tubes have been observed via light and
electron microscopy An electron microscope is a microscope that uses a beam of accelerated electrons as a source of illumination. As the wavelength of an electron can be up to 100,000 times shorter than that of visible light photons, electron microscopes have a hi ...
and described as a meshwork of astrocytic bodies and processes. They have been determined to be astrocytes based on the typical expression of GFAP (glial fibrillary acidic protein) and more specifically as protoplasmic astrocytes based on their morphology. Furthermore, these glial cells were found to be positive for
vimentin Vimentin is a structural protein that in humans is encoded by the ''VIM'' gene. Its name comes from the Latin ''vimentum'' which refers to an array of flexible rods. Vimentin is a type III intermediate filament (IF) protein that is expressed ...
expression, a protein commonly found in embryonic or immature glial cells. The developing neurons are identified by their expression of the cell surface molecule, a polysialylated (PSA) embryonic form of the neural cell adhesion molecule (
NCAM Neural cell adhesion molecule (NCAM), also called CD56, is a homophilic binding glycoprotein expressed on the surface of neurons, glia and skeletal muscle. Although CD56 is often considered a marker of neural lineage commitment due to its discover ...
) called PSA-NCAM, as well as β-tubulin, a protein often found in postmitotic neuroblasts, proving the cells of RMS are committed to developing into neurons and will do so upon entry into the olfactory bulb. With the removal of NCAM, the neuroblasts scatter, proving the importance of NCAM in chain formation. The neurons form both clusters and chains along the lumen of these glial tubes. Once the developing neurons reach the core of the olfactory bulb, they detach from the RMS, which is initiated by
Reelin Reelin, encoded by the ''RELN'' gene, is a large secreted extracellular matrix glycoprotein that helps regulate processes of neuronal migration and positioning in the developing brain by controlling cell–cell interactions. Besides this import ...
and
tenascin Tenascins are extracellular matrix glycoproteins. They are abundant in the extracellular matrix of developing vertebrate embryos and they reappear around healing wounds and in the stroma of some tumors. Types There are four members of the tenasc ...
and move radially toward glomeruli, this migration is dependent on
tenascin-R Tenascin-R is a protein that in humans is encoded by the ''TNR'' gene. Function Tenascin-R (TNR) is an extracellular matrix protein expressed primarily in the central nervous system. It is a member of the tenascin (TN) gene family, which inclu ...
, and differentiate into subtypes of interneurons. These neurons have been studied ''in vivo'' via
electrophysiology Electrophysiology (from Greek , ''ēlektron'', "amber" etymology of "electron"">Electron#Etymology">etymology of "electron" , ''physis'', "nature, origin"; and , '' -logia'') is the branch of physiology that studies the electrical properties of b ...
and confocal imaging.


Cell signaling

The nature of the molecular cues involved in the correct targeting of the migrating precursors remains a question. The secretion of a
chemoattractant Chemotaxis (from '' chemo-'' + ''taxis'') is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemical ...
factor by the OB appears as a possibility. Chemoattractants and repellants act on the migrating neurons by inducing changes in the
growth cone A growth cone is a large actin-supported extension of a developing or regenerating neurite seeking its synaptic target. It is the growth cone that drives axon growth. Their existence was originally proposed by Spanish histologist Santiago Ramó ...
to direct them. Nevertheless, tissue derived from this structure had no directive influence on the migration. On the other hand, a
septum In biology, a septum (Latin for ''something that encloses''; plural septa) is a wall, dividing a cavity or structure into smaller ones. A cavity or structure divided in this way may be referred to as septate. Examples Human anatomy * Interatri ...
-derived secreted factor showed a repulsive effect on the SVZ cells. More recently, it has been shown that the secreted molecule SLIT shows such a repelling effect on SVZ-derived precursors. Furthermore,
integrins Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
have been demonstrated to have a regulatory influence on precursor cell chain-migration and regulation of their divisions. PSA-NCAM appears as another candidate. Mice lacking NCAM show a dramatically size-reduced OB and an accumulation of migrating precursors along the RMS. It is possible that lack of NCAM results in agitation of neuron–glia interactions, and modifications in these interactions might in turn be responsible for the inhibition of migration in the RMS. It has been demonstrated that a cross talk exists between neurons and glial cells and data in favor of an active role of PSA–NCAM in this process has been presented. The lack of PSA–NCAM on the surface of migrating precursors might alter the proliferative properties of this glial cell population, a scenario that appears reminiscent of
astrogliosis Astrogliosis (also known as astrocytosis or referred to as reactive astrogliosis) is an abnormal increase in the number of astrocytes due to the destruction of nearby neurons from central nervous system (CNS) trauma, infection, ischemia, stroke, a ...
occurring in
neurodegenerative diseases A neurodegenerative disease is caused by the progressive loss of structure or function of neurons, in the process known as neurodegeneration. Such neuronal damage may ultimately involve cell death. Neurodegenerative diseases include amyotrophic ...
even before any signs of neuronal damage.


Current research


Existence in humans

The presence of an analogous RMS in humans has been difficult to identify, possibly because the olfactory bulb is significantly less developed in humans than in rodents and thus harder to study, and much of the previous scientific work has been called into question concerning the RMS in humans. In the developing fetal brain and in young postnatal infants, chains of immature neurons typical of the RMS were observed. However, there was little evidence for the existence of a migrating chain along the SVZ or olfactory peduncle to the bulb in the adult human brain, even though there was a distinct population of adult neuronal stem cells in the SVZ. These researchers studied subjects from 0 to 84 years of age by analyzing brain sections that had been removed during surgery or during autopsies. They discovered that cells that expressed DCX (doublecortin) and PSA-NCAM are present in the brain sections taken from infants, but have disappeared by 18 months. Yet further studies indicated the presence of a small population of migrating immature neurons, which originate solely from the SVZ. These neuroblasts appear singly or in pairs without forming chains, in contrast to the elongated chains of neuroblasts observed in the rodent RMS. This suggests that the RMS is drastically reduced beyond infancy and especially into adulthood, but is not absent. However, a direct correlation between stem cell quiescence and age has not yet been defined due to a high level of variability between individuals. Thus an RMS analogous structure in the adult human brain remains highly controversial.


Age-related decline

The extent of age-related RMS decline in humans has been the subject of significant debate. The decline of neurogenesis in and migration from the hippocampus in humans has already been well documented. Furthermore, age-related declines in the activities of SVZ
stem cells In multicellular organisms, stem cells are undifferentiated or partially differentiated cells that can differentiate into various types of cells and proliferate indefinitely to produce more of the same stem cell. They are the earliest type o ...
, which migrate to the OB via the RMS, are in place by middle age in rodents. In elderly mice, studies showed that the population of actively dividing SVZ cells and the rate of interneuron replacement in the OB are both drastically reduced, indicating an age-related decline in neuronal proliferation and migration through the RMS. This decline was shown to be due to neuronal stem cell quiescence in the SVZ even by middle age, and not destruction, much like in the hippocampus.


Pharmaceuticals

Another topic in current RMS research pertains to
pharmaceuticals A medication (also called medicament, medicine, pharmaceutical drug, medicinal drug or simply drug) is a drug used to diagnose, cure, treat, or prevent disease. Drug therapy (pharmacotherapy) is an important part of the medical field and rel ...
. Scientists are still trying to tackle the difficult task of administering drugs into the brain and getting them past the selective
blood–brain barrier The blood–brain barrier (BBB) is a highly selective semipermeable membrane, semipermeable border of endothelium, endothelial cells that prevents solutes in the circulating blood from ''non-selectively'' crossing into the extracellular fluid of ...
. In a recent study, researchers tested the role of the RMS in “intranasal delivery of drugs into the CNS”. In this study, the experimenters disrupted the RMS in mice, which obstructed “the uptake of intranasally administered radioligands into the CNS.” Fluorescent tracers were also used to track the medicine throughout the brain. It was found that the medicine spread to all regions of the brain, including the olfactory bulb. The study concluded that the RMS was extremely prevalent and necessary in the central nervous system in order to deliver drugs intranasally. The study also noted that this research on the RMS is not sufficient, but instead needs to be expanded. Some of the limits and capabilities of the RMS are still unknown, as well as some of the hazards of it. If drugs are to be administered into the CNS through the RMS, all of the details of the RMS must be known in order to ensure safe delivery of the drugs to the brain.


α6β1 integrin

A study was conducted testing a specific
integrin Integrins are transmembrane receptors that facilitate cell-cell and cell-extracellular matrix (ECM) adhesion. Upon ligand binding, integrins activate signal transduction pathways that mediate cellular signals such as regulation of the cell cycle, ...
, alpha-six-beta-one, and the role it plays in the RMS. The study researched the principle that chemoattractive molecules may play an important role in neuroblast migration in the RMS. The study of this one particular integrin was conducted in mice. By using
antibodies An antibody (Ab), also known as an immunoglobulin (Ig), is a large, Y-shaped protein used by the immune system to identify and neutralize foreign objects such as pathogenic bacteria and viruses. The antibody recognizes a unique molecule of the ...
to bind to α6β1 integrin subunits, found on the neuroblasts, the researchers observed that the migration was disrupted. Furthermore, they investigated the mechanism through which α6β1 integrin functions and determined it was via the
chemoattractant Chemotaxis (from '' chemo-'' + ''taxis'') is the movement of an organism or entity in response to a chemical stimulus. Somatic cells, bacteria, and other single-cell or multicellular organisms direct their movements according to certain chemical ...
laminin. This was completed by injecting
laminin Laminins are a family of glycoproteins of the extracellular matrix of all animals. They are major components of the basal lamina (one of the layers of the basement membrane), the protein network foundation for most cells and organs. The laminins ...
perpendicular to the RMS and observing that doing so drew “neuroblasts away from their normal course of migration”. The researchers concluded with the idea that this research could prove useful for therapeutics purposes in that neuroblasts could potentially be drawn to locations of injury or disease.


References

{{reflist


External links


Chain migration in the SVZ-RMS
- figure from a
article

See Joseph Altman's original research
Developmental neuroscience